Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Ieee Access ; 11:595-645, 2023.
Article in English | Web of Science | ID: covidwho-2311192

ABSTRACT

Biomedical image segmentation (BIS) task is challenging due to the variations in organ types, position, shape, size, scale, orientation, and image contrast. Conventional methods lack accurate and automated designs. Artificial intelligence (AI)-based UNet has recently dominated BIS. This is the first review of its kind that microscopically addressed UNet types by complexity, stratification of UNet by its components, addressing UNet in vascular vs. non-vascular framework, the key to segmentation challenge vs. UNet-based architecture, and finally interfacing the three facets of AI, the pruning, the explainable AI (XAI), and the AI-bias. PRISMA was used to select 267 UNet-based studies. Five classes were identified and labeled as conventional UNet, superior UNet, attention-channel UNet, hybrid UNet, and ensemble UNet. We discovered 81 variations of UNet by considering six kinds of components, namely encoder, decoder, skip connection, bridge network, loss function, and their combination. Vascular vs. non-vascular UNet architecture was compared. AP(ai)Bias 2.0-UNet was identified in these UNet classes based on (i) attributes of UNet architecture and its performance, (ii) explainable AI (XAI), and, (iii) pruning (compression). Five bias methods such as (i) ranking, (ii) radial, (iii) regional area, (iv) PROBAST, and (v) ROBINS-I were applied and compared using a Venn diagram. Vascular and non-vascular UNet systems dominated with sUNet classes with attention. Most of the studies suffered from a low interest in XAI and pruning strategies. None of the UNet models qualified to be bias-free. There is a need to move from paper-to-practice paradigms for clinical evaluation and settings.

3.
Indian Journal of Endocrinology and Metabolism ; 26(Suppl 1):S13-S13, 2022.
Article in English | EuropePMC | ID: covidwho-1824525

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a global pandemic where several comorbidities have been shown to have a significant effect on mortality. Patients with diabetes mellitus (DM) have a higher mortality rate than non-DM patients if they get COVID-19. Recent studies have indicated that patients with a history of diabetes can increase the risk of severe acute respiratory syndrome coronavirus 2 infection. Additionally, patients without any history of diabetes can acquire new-onset DM when infected with COVID-19. Thus, there is a need to explore the bidirectional link between these two conditions, confirming the vicious loop between “DM/COVID-19”. This narrative review presents (1) the bidirectional association between the DM and COVID-19, (2) the manifestations of the DM/COVID-19 loop leading to cardiovascular disease, (3) an understanding of primary and secondary factors that influence mortality due to the DM/COVID-19 loop, (4) the role of vitamin-D in DM patients during COVID-19, and finally, (5) the monitoring tools for tracking atherosclerosis burden in DM patients during COVID-19 and “COVID-triggered DM” patients. We conclude that the bidirectional nature of DM/COVID-19 causes acceleration towards cardiovascular events. Due to this alarming condition, early monitoring of atherosclerotic burden is required in “Diabetes patients during COVID-19” or “new-onset Diabetes triggered by COVID-19 in non-Diabetes patients”.

SELECTION OF CITATIONS
SEARCH DETAIL